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Abstract
This article expands on recent studies of machine learning or artificial intelligence (AI) algorithms
that crucially depend on benchmark datasets, often called ‘ground truths.’ These ground-truth 
datasets gather input-data and output-targets, thereby establishing what can be retrieved 
computationally and evaluated statistically. I explore the case of the Tumor nEoantigen 
SeLection Alliance (TESLA), a consortium-based ground-truthing project in personalized cancer 
immunotherapy, where the ‘truth’ of the targets—immunogenic neoantigens—to be retrieved 
by the would-be AI algorithms depended on a broad technoscientific network whose setting 
up implied important organizational and material infrastructures. The study shows that instead 
of grounding an undisputable ‘truth’, the TESLA endeavor ended up establishing a contestable 
reference, the biology of neoantigens and how to measure their immunogenicity having slightly 
evolved alongside this four-year project. However, even if this controversy played down the 
scope of the TESLA ground truth, it did not discredit the whole undertaking. The magnitude of 
the technoscientific efforts that the TESLA project set into motion and the needs it ultimately 
succeeded in filling for the scientific and industrial community counterbalanced its metrological 
uncertainties, effectively instituting its contestable representation of ‘true’ neoantigens within 
the field of personalized cancer immunotherapy (at least temporarily). More generally, this case 
study indicates that the enforcement of ground truths, and what it leaves out, is a necessary 
condition to enable AI technologies in personalized medicine.
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Introduction

For about ten years, inquiries in Science & Technology Studies (STS) have docu-
mented the constitutive relationships of machine learning or artificial intelligence 
(AI) algorithms, which are probabilistic models that infer calculation rules from sets 
of data (e.g. Hoffmann, 2017; Jaton, 2019; Lee, 2021). Among these social inquiries, 
some have focused on the material infrastructure required for the constitution of new 
algorithms (Crawford, 2021; Jaton, 2021a), especially in terms of data work and 
annotation (Gray & Suri, 2019; Tubaro et al., 2020). These works have made visible 
problematic entities often called ‘ground truths’ (Henriksen & Bechmann, 2020; 
Jaton, 2017) which are manually constructed benchmark datasets that gather input-
data and output-targets, thereby establishing what can be retrieved computationally 
and evaluated statistically (see Figures 1 and 2). By underlining the centrality of 
ground-truth datasets for the development AI algorithms and by bringing to the fore-
front the question of the biases and inequalities inscribed in them (e.g. Crawford, 
2016; Jaton, 2021b; Noble, 2018), these works have effectively operated, at their own 
level, as a counter-fire to the commercial and seductive rhetoric of techno-modernist 
promoters and AI over-enthusiasts.

Most of these studies have focused on applied domains of computer science (e.g. 
computer vision, natural language processing) and few have documented how AI algo-
rithms are mobilized and worked upon in experimental sciences.1 This is especially, and 
surprisingly, true for biomedical sciences: While the past few years have seen many 
important debates about the politics and epistemology of data- and algorithm-driven 
biomedicine (e.g. Chin-Yee & Upshur, 2019; Green & Svendsen, 2021; Leonelli 2016; 
Prainsack, 2018; Strasser, 2019), there are still few empirical case studies on the effects 
of AI algorithms on contemporary biomedical practices (c.f. Carboni et al., 2023; Dahlin, 
2023). What is going on today in biomedicine with regards to AI technologies? As more 
and more utopian and dystopian discourses are being produced about an increasingly 
personalized medicine that would be powered by AI algorithms (e.g. Roth & Bruni, 
2021; Topol, 2019; Zuboff, 2019, chap. 8), it seems important, or at least interesting, to 
address this question in a down-to-earth manner.

In this article I explore the case of a consortium-based project in personalized 
cancer immunotherapy—the Tumor nEoantigen SeLection Alliance (TESLA, noth-
ing to do with the electric car company)—that started in 2016 and provisionally 
ended in 2020 with the release of an online dataset describing neoantigens, which are 
promising molecules for cancer immunotherapy, and the joint publication of a col-
lective article in the high-impact journal Cell (Wells et al., 2020). Based on a litera-
ture review and semi-structured interviews (N = 12) with bioinformaticians who took 
part in the TESLA project, this article retraces some of the events that led to the 
publication of the first genuine ground truth for neoantigen prediction in cancer 
immunotherapy, as well as some of the issues and controversies related to this 
achievement. In that sense, this article is a practical application of what Kang (2023) 
recently coined ‘ground-truth tracing’, namely the investigation into the construc-
tion processes of ground-truth datasets as well as the habits, desires, and values these 
processes entail and promote.2
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Figure 1.  Schematic of a ground-truth dataset for face detection (WIDER FACE, by Yang 
et al., 2016). On the left, one among the 32,203 images of the publicly available dataset for 
face-detection research. In the middle, the face annotations for this specific image. Since each 
annotation belongs to the coordinate space of the digital image, it can be expressed by a set of 
four numerical values, the first two expressing the start position of the label along the x and y 
axes, the third one expressing the number of pixel wide, the fourth one expressing the number 
of pixels high.
Source: Reproduced with permission from Jaton (2021b).

Using the case of the TESLA project, I first intend to account for ongoing processes 
related to the development and use of AI technologies in biomedical research. In parallel, 
I also intend to dig deeper into the topic of ground-truthing processes by exploring an 
instructive ambiguous case where the ‘grounding’ of the scientific referent—the so-
called ‘truth’ to be later approximated algorithmically—depended on measurement pro-
tocols that were not yet fully stabilized. Indeed, as we shall see, instead of grounding an 
undisputable ‘truth’, the TESLA endeavor ended up establishing a contestable reference, 
the biology of neoantigens and how to measure their immunogenicity having slightly 
evolved alongside this four-year project. However, despite its controversial results, the 
magnitude of the technoscientific efforts that the TESLA project set into motion and the 
need it ultimately succeeded in filling in the scientific and industrial community counter-
balanced its metrological uncertainties, thus instituting its representation of ‘true’ neoan-
tigens within the field of personalized cancer immunotherapy (at least temporarily). 
More generally, this case study indicates that the enforcement of ground truths, and what 
it leaves out, is a necessary condition to enable AI technologies in personalized medi-
cine, even while they may stifle discordant realities.

Neoantigens for personalized cancer immunotherapy

The recent history of cancer research has been marked by a general reconsideration of 
the role of the adaptive immune system3 in cancer development (Löwy, 1996; Pradeu, 
2019). Far from being strictly misled by cancer development, the adoptive immune sys-
tem and its thymic-derived cells (T-cells) have appeared increasingly capable of trigger-
ing anti-tumor responses (Graber et al., 2023). And among the many entities (standardized 
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Figure 2.  Performance graphs that evaluate competing face-detection algorithms on the 
WIDER FACE ground truth. All the curbs—called ‘Ours’, ‘DP2MFD’, etc.—refer to competing 
face-detection algorithms published by different research teams. Graph (a) shows the true/false 
positive rates of all algorithms; graphs (b) (c) and (d) show the precision (true positives divided 
by the sum of true positives and false positives) and recall (true positives divided by the sum of 
true positives and false negatives) of all algorithms on three subsets of the WIDER FACE ground 
truth, that themselves define the boundary of the coordinate systems (i.e. coordinate [1;1]).
Source: Reproduced with permission from Zhang et al. (2016).

scientific equipment, attested cells, authorized drugs) that have contributed to the resur-
gence of what is now confidently called ‘cancer immunotherapy’ (Esfahani et al., 2020), 
there are the so-called neoantigens.

Neoantigens, whose existence has been assumed since 1965,4 derive from somatic 
mutations (i.e. genomic variations of a somatic cell) that are now considered one of the 
main hallmarks of cancer (Hanahan & Weinberg, 2011). In broad strokes, tumor-spe-
cific mutations produce novel protein sequences from which derive unprecedented 
(neo) fragments of proteins (antigens) capable of being displayed on the surface of 
tumor cells via a molecular arrangement called major histocompatibility complex 
(MHC).5 Importantly, neoantigens are deemed to be absent from the ‘normal’ (i.e. non-
cancerous) human genome, which make them specific to the tumor and the patient. 
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Hence the immense clinical interest in somehow making endogenous (i.e. deriving from 
the same body) T-cells capable of recognizing these tumor- and patient-specific mole-
cules since they can, and do (Tran et al., 2017), trigger immune responses confined to 
the cancerous tissues (since neoantigens are not produced, nor presented, by any cells 
other than tumor cells). And as of 2014, it was these unique characteristics of neoanti-
gens that fueled the promise of a personalized cancer immunotherapy (Heemskerk et 
al., 2013, p. 201).6

In terms of how to make patients’ T cells capable of recognizing neoantigens pre-
sented on the surface of cancer cells via the MHC (see Figure 3), two main methods have 
been developed since the launch of this line of research, that has come to be known as 
personalized adoptive cell therapy (Rosenberg & Restifo, 2015). The first one involves 
sampling T-cells from the patient’s blood and then genetically modifying certain proper-
ties of their receptors (TCRs) to make them sensitive to a putative neoantigen presented 
on the tumor surface via the MHC (Yamamoto et al., 2019). This method, called chimeric 
antigen receptor (CAR) T-cell therapy was developed between the 1990s and 2000s (i.e. 
before the advent of neoantigens in cancer immunotherapy research) in order to target 
antigens that are present in abundance on certain types of solid cancer (but also on other 
types of healthy cells, hence major problems of immune reactions). Although they pro-
duce promising results on solid tumors and are the object of important investments in 
corporate research and development,7 neoantigen-specific CAR T-cell therapies are, at 

Figure 3.  Schematic of a putative neoantigen. The mass on the far left of the figure represents 
a solid cancer cell. The two growths emanating from it—named MHC I—refer to the major 
histocompatibility complex, a molecular arrangement whose many functions include displaying 
peptides derived from turnover proteins on the surface of the cancer cell. The mass on the 
far right of the figure represents a T-cell. The two outgrowths emanating from it, named TCR 
(symmetric to MHC I), refer to the T-cell receptor. In the center of the figure lies the putative 
neoantigen, a peptide that carries great hopes for personalized cancer immunotherapy.
Source: Reproduced with permission from Schumacher and Schreiber (2015).
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the time of writing, still experimental and thus restricted to clinical trials (Wang & Cao, 
2020).

The second type of personalized adoptive cell therapy, which is also in clinical trials 
at the time of writing, is based on the collection of the patient’s T-cells selected according 
to their probabilistic affinity for putative neoantigens, their clonal expansion in vitro, and 
their reinfusion into the patient (Bianchi et  al, 2020). This process, sometimes called 
neoantigen-specific tumor-infiltrating lymphocytes (TILs) therapy, differs from CAR 
T-cell therapy in that it does not genetically modify TCRs, thus allowing more putative 
neoantigens to be targeted (Bianchi et  al., 2020). As it stands, however, this process 
requires resetting the patient’s immune system, which involves heavily equipped prepa-
ration steps (Cohen et al., 2017).

These two types of neoantigen-specific (and thus potentially personalized) adoptive 
cell therapies involve identifying neoantigens that can be recognized by T-cells and elicit 
an effective immune response (i.e. immunogenic neoantigens). This is a condition of pos-
sibility of these two experimental treatments8: Without the possibility of effectively iden-
tifying patients’ immunogenic tumor-specific neoantigens, efforts in terms of 
neoantigen-centered CAR T-cell or TILs therapies can only be in vain. And achieving this 
identification is all the more difficult as neoantigens can only be captured indirectly, 
through probabilistic inferences from comparisons between patients’ normal and tumoral 
DNA and RNA sequences. It is nearly impossible to detect neoantigens ‘physically’, as 
the wet and bulky surface of tumor cells are strewn with hundreds of thousands of other 
very different peptides that have no attraction potential towards T cells. Moreover, since 
immunogenic neoantigens derive from somatic mutations, they must, in theory, be patient-
specific, which prevents the formation of a cumulative taxonomy, as it may be the case for 
self-antigens. In short, in order to be able to identify immunogenic neoantigens, and to try 
to realize the promise of personalized cancer immunotherapy, it is necessary to go through 
algorithmic processes that will compute genomic data to make predictions whose con-
tent—that is, existence and biological characteristics of immunogenic neoantigens—can 
then operate as the targets of personalized CAR T-cell or TILs therapies.

This technoscientific heaviness is certainly one of the current limitations of research 
on personalized cancer immunotherapy: If each patient produces their own neoantigens, 
it becomes necessary to profile the cancer transcriptome, sequence the cancer RNA, 
DNA, and matched normal DNA before proceeding to algorithmic analyses in order to 
identify abnormal protein-coding regions that could be at the origin of the presence of the 
immunogenic neoantigens on the surface of the cancer cells (more on this later). And all 
this only to get the targets for personalized CAR T-cell or TILs experimental treatments, 
which themselves entail many more convoluted operations (Graber, 2023): quite a heavy 
apparatus indeed.

But it is also important to note that the technoscientific heaviness of neoantigens is at 
the same time one of the reasons of their return to the forefront of cancer immunotherapy 
research. Indeed, as Schumacher and Schreiber (2015, p. 69) argue, without the growing 
availability (in rich countries) of infrastructures for relatively rapid and affordable high-
throughput DNA and RNA sequencing technologies, as well as for big data analysis, the 
very idea of a cancer immunotherapy based on individual genomic features may not have 
been developed, let alone supported. In this sense, neoantigens, and the question of their 
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identification, are also the inheritors of the entangled processes related to the deployment 
of next generation sequencing (NGS) and are imprinted, in their current deployments, of 
the deep reorganizations of biomedicine that recently took place around sequencing and 
data analysis technologies.

Reassembled through genomics

Determining the linear order of the components of macromolecules—that is, sequenc-
ing—is a process that involves many different actors and devices. This was already the 
case in the early 1980s when what is now called ‘first generation sequencing’ mobilized, 
among other things, DNA polymerization, fluorescently-labeled nucleotides, electropho-
resis processes (Heather & Chain, 2016, pp. 1–3) but also, sometimes, non-trivial com-
putational models stemming from applied physics and developed by researchers with a 
hybrid status having access to computing infrastructures of operations research centers 
(Stevens, 2013, pp. 22–32). But this sequencing-related community of actants (Latour, 
2005) has grown dramatically since the 2000s and the advent of so-called ‘post-genomic’ 
disciplines whose NGS technologies started to involve, among many other things, biop-
sies, amplification processes, bioinformaticians, digital data formats (e.g. BCL and 
FASTQ), distributed computing, reference databases, visualization software (e.g. IVG) 
and countless norms, best practices and gold standards to make, sometimes, genomic big 
data actionable (Nelson et  al., 2013) for diagnosis, prognosis or therapeutics (Hà & 
Chow-White, 2021). The acronym NGS refers to something far larger than a set of tech-
nologies: It refers to a sociotechnical process that comprises concrete locations and 
instruments, but also people and ways of doing and thinking that mutually constitute 
each other and, by this fact, participate in the constitution of sequencing-derived bio-
medical knowledge (Cambrosio, Keating, et al., 2018).

NGS processes, and the social relationships they require and produce, had a signifi-
cant impact on contemporary biomedicine, particularly in relation to the increasing spe-
cialization of its various sub-disciplines and their (assumed) relative distance from 
clinical practice. Geneticist, oncologist, immunologist, data analyst, bioinformatician, 
cloud computing expert: The myriad of professions involved in NGS processes had, and 
have, their own learned societies, academic journals, and even departments that deliver 
specific PhDs, which progressively became compulsory for researchers wishing to pur-
sue a career and obtain a stable position. And if this specialization dynamic effectively 
supported major advances in fundamental research, especially in oncology, it has also 
been criticized, notably for its inability to produce effective differences in routine clini-
cal care (Sung et al., 2003).

From the 2010s onwards, this assumed pitfall of ultra-specialized post-genomic bio-
medicine prompted major funding agencies (e.g. NIH and NHS) to find out ways to ‘fill 
in the gap’ between research and the clinic (Butler, 2008). As a result of these institu-
tional reflections, whose precise history remains to be done, a series of measures have 
been implemented—among them a redefinition of the requirements for obtaining grants 
and a series of changes in the criteria for evaluating outputs (e.g. counting patents and 
collaborations with hospitals and firms)—under the umbrella term ‘translational research’ 
(Woolf, 2008).
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There is much debate on whether the hundreds of millions of dollars, pounds, and 
euros invested since the 2010s in translational research aimed at bringing fundamental 
research closer to the clinic (‘bench to bedside’) have had positive or negative impacts 
on Western biomedicine, broadly considered (for a discussion on this debate, see Blümel, 
2018). But it seems now established, at least among social students of biomedicine, that 
instead of leading to a clear translation of fundamental certified knowledge into routine 
clinical applications, the rearrangements composed under the banner of translational 
research have contributed to blurring the distinction between research and care, espe-
cially in oncology (Besle, 2018; Nelson et al., 2014). In a recent attempt to characterize 
this new mode of biomedical practice at the interface of basic research and the clinic, 
Cambrosio, Vignola-Gagné et  al. (2018) have proposed the notion of ‘experimental 
care’: a configuration that brings together clinicians, basic researchers and bioinformati-
cians—from academia, hospitals, non-profit organizations and, sometimes, the indus-
try—around trials, during which research and care are mutually constituted.

The rearrangements suggested by experimental care configurations, themselves 
induced by the instauration of translational research, suggest new opportunities, such as 
renewed connections between public networks and commercial entities, especially those 
proposing distributed cloud computing services, now mostly based in the Bay Area.9 
Indeed, uncovering correlations between genomic variations (i.e. textual mismatches) 
and health conditions (i.e. attested phenotypes) during clinical trials implies swiftly navi-
gating trillions of bytes of text data, an operation made possible since the 2010s and the 
widespread distribution of dedicated algorithms (e.g. Hadoop and Cloudburst) that have 
in turn enabled the use of professional storage and computing services provided by spe-
cialized companies (Stevens, 2016). Biomedicine, in its translational research efforts 
adapted to NGS processes, has thus progressively constituted a new market, that of bio-
medical cloud computing infrastructures, which specialized companies and start-ups 
such as Cloudera and Spiral Genetics, but also industrial giants such as Amazon and 
Microsoft (via their cloud services), have rushed to enter and shape. This new ecosystem 
of infrastructure providers has also contributed to the emergence of hybrid non-profit 
organizations acting as facilitators between industry, regulatory agencies (e.g. U.S. Food 
and Drug Administration), and translational post-genomic research, one of the latest 
US-based example being the Parker Institute of Cancer Immunotherapy (PICI) that we 
will soon closely examine.

Let us recap. NGS processes have contributed to major transformations in biomedi-
cine. The advent of translational research, itself induced by the hyper-specialization 
required to make sequencing and interpretation technologies operational, has contributed 
to blurring the distinction between research and clinical care, in turn suggesting experi-
mental care configurations that themselves inherit previous local arrangements and pre-
existing networks. This mosaic of relationships implies organizational and governance 
issues that themselves suggest closures, but also opportunities that may be seized by new 
actors, especially those close to cloud-based and distributed computing, an obligatory 
point of passage for any current sequencing operation (Graber et al., 2023). These syner-
gies have, in turn, contributed to the emergence of hybrid entities—halfway between 
research and industry—operating as coordinators for the implementation of infrastruc-
tures aimed at facilitating the relationships between industry, research, and regulatory 
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agencies. And it is in this context of a sort of Silicon Valley-based reappropriation of the 
Human Genome Project’s imaginaries that appeared PICI, the institution behind the neo-
antigen-related TESLA project that we are now about to follow.

The TESLA project challenge

The new ecosystem of post-genomic experimental care is looking West, especially at the 
Bay Area, where companies and capital engaged in the computing industry are clustered. 
And it is in this specific small part of the world, the epicenter of contemporary digital 
capitalism, that the TESLA project aiming to address the challenge of neoantigen predic-
tion took shape, in the wake of the creation of PICI, itself emanating from the Parker 
Foundation built upon the fortune of charismatic Silicon Valley entrepreneur Sean 
Parker.

Parker may be best known as one of the founders of the peer-to-peer audio file sharing 
system Napster, which was shut down in 2002 due to lawsuits. But the short-lived suc-
cess of Napster allowed Parker to raise funds to launch Plaxo, one of the very first social 
networking services. Although he was soon ousted from the company for reasons that are 
still unclear today, this experience brought him into early contact with Mark Zuckerberg 
and Eduardo Savarin, who appointed him president of their nascent company Facebook 
in 2004. And while Parker’s presidency came to an abrupt halt following a suspected 
drug possession, it still allowed him to own many Facebook shares, which turned out to 
be gold mines after Facebook’s IPO on NASDAQ in May 2012. Indeed, by selling his 
shares when they were at their highest, Parker became one of the youngest Silicon Valley 
billionaires.

Parker founded the Parker Foundation in 2015 for $600 million, based on the North 
American model of philanthropy (de Merced, 2015).10 It is difficult to know the precise 
reasons, but it seems that stories of family illness along with recurrent meetings with 
Jeffrey Bluestone—a renowned expert in T-cells, based at the University of California, 
San Francisco—then prompted Parker to allocate $240 of these $600 millions to the crea-
tion of a non-profit research organization focused on cancer immunotherapy. This was 
PICI, founded in 2016. This non-profit organization was explicitly designed for the man-
agement of clinical trials and bioinformatics resources for six US-based partner institu-
tions active in the field of cancer immunotherapy: the Memorial Sloan Kettering Cancer 
Center (MSKCC), the University of Pennsylvania (UP), the University of Texas M. D. 
Anderson Cancer Center (MDACC), Stanford Medicine (SM), and the University of 
California campuses in San Francisco (UCSF) and Los Angeles (UCLA; Pollack, 2016).11 
This positioning as both initiator and coordinator of cross-institutional projects makes 
PICI function as an ‘operational foundation’ (Anheier & Daly, 2005, p. 162), with fixed-
term postdoctoral employees coordinating so-called ‘PICI-funded initiatives’ (see Figure 
4). However, PICI can also be considered, at least to some extent, a ‘corporate foundation’ 
(Anheier & Daly, 2005, p. 162), as many of its board members are also board members of 
private companies and start-ups.

PICI’s explicit area of expertise (i.e. cancer immunotherapy), its numerous relation-
ships with the computing industry (e.g. its location in the Bay Area, its being chaired by 
Silicon Valley billionaire Sean Parker) as well as, more generally, the prominent place of 
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data analytics in post-genomic biomedicine (e.g. the necessity of navigating through tril-
lions of bytes of text data using distributed infrastructures) soon prompted PICI to take 
on the issue of neoantigens—the then-most promising molecules for cancer immuno-
therapy—and frame it in bioinformatics terms. Specifically, due in part to the recruit-
ment of a team of biostatistician postdocs at the launch of PICI in 2016, an opportunity 
for a PICI-funded initiative quickly emerged around the development of an infrastructure 
to support the development of neoantigen prediction algorithms. As one of my inform-
ants put it:

At that time [2015-2016] many [research] teams were developing custom algorithms to predict 
good peptides [i.e., immunogenic neoantigens], some with fancy machine learning tools. But 
the problem was that you could only self-assess your model because there was no benchmark. 
(Informant 3, biostatistician)

In other words, the rush towards neoantigen-related experimental care went together 
with the development of various computerized methods of calculation—which today we 
would call AI algorithms—aiming to predict the existence of immunogenic neoantigens 

Figure 4.  Schematics derived from PICI’s website representing the desired positioning of 
PICI within US-based cancer immunotherapy research. On the left, the situation as considered 
by PICI promoters before its creation: Numerous stakeholders (rectangles) have disordered 
interactions (arrows) that lead to many scattered projects (circles). On the right, the situation 
as hoped for by PICI promoters following its creation: Interactions are structured around PICI, 
which takes care of the coordination between the different stakeholders, notably via PICI-
funded initiatives.
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capable of triggering immune responses by means of made-greedy endogenous T cells. 
At the time of PICI’s launch in 2016, these algorithms—which rely on more or less arbi-
trary assumptions about the genomic derivation of neoantigens as well as their ecology 
within, and around, cancer cells—could not be compared with each other because the 
scientific community did not have any reference repository. In computational biology, 
and in applied computer science in general (Jaton, 2017), this is the well-known problem 
of self-assessing the superiority of one model over another by mobilizing custom refer-
ences and metrics. In these problematic situations, the same informant continues:

[T]he general rule is that your algorithm is better than the others because you know better how 
it works and so you can evaluate it accordingly. … [W]ithout a benchmark, you can’t get out of 
this problem, and you don’t know which kind of algorithm performs the best. (Informant 3, 
biostatistician)

At the launch of PICI, a first potential PICI-driven initiative could then try to answer the 
following questions: How can one shape a list of immunogenic neoantigens that could 
serve as a basis for training and evaluating prediction algorithms? How can one build a 
reference dataset that could serve as a benchmark for the development and evaluation of 
neoantigen prediction algorithms? These were genuine scientific questions because can-
cer immunotherapy research indeed lacked an authoritative ground truth to distinguish 
between good and less good algorithms for predicting neoantigens (algorithms that could 
in turn be mobilized in experimental care configurations). But they were also genuine 
strategic questions because it may also enable PICI to effectively make its way into an 
existing network of prestigious cancer-related research institutions (MSKCC, UP, etc.). 
And as many classical STS on metrology have shown, establishing oneself as a reference 
scale often equates to positioning oneself as an obligatory passage point (Callon, 1999; 
O’Connell, 1993; Mallard, 1998). From PICI’s perspective in 2016, then, without a 
benchmarked ground truth, it was impossible to get cancer immunotherapy break-
throughs (powered by prediction algorithms) out of the local networks that generated 
them. But with a benchmarked ground truth, preferably built through a PICI-funded 
initiative (and thus officially associated with PICI), the results of cancer immunotherapy 
research—at least for its bioinformatics side—could show their significance and robust-
ness in other networks, for example industrial or regulatory.

Immunogenic neoantigens are very small, rare, NGS-dependent, patient- and tumor-
specific, and therefore extremely complicated and expensive to detect and assess relia-
bly. Still from PICI’s perspective, how could it shape this precious list of attested 
immunogenic neoantigens that could serve as a basis for the training and evaluation of 
algorithms for the research community? How could it generate attested ‘true’ neoanti-
gens, robust enough to be accepted and used by bioinformaticians working in the 
(restricted) field of computational cancer immunotherapy? This is where the notion of 
‘challenge’ comes in.

In applied computer science, a challenge is a competition most often organized by an 
independent organization (e.g. learned societies) that makes several teams compete on 
the same dataset. The computational results of each team are then evaluated against the 
‘true’ answers, known only to the competition organizers. The team that comes closest to 
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the ‘true’ answers—that is, the ground truth—wins the challenge, which leads to a rank-
ing of the competing teams. The best performing computational methods, according to 
the metrics used by the challenge organizers, are then published online and made avail-
able to the rest of the scientific community. Bioinformatics, as a discipline, has been built 
around and through this type of competitions, which have long been integral part of 
conferences and symposia:

In bioinformatics, there is a great history of competition between different research groups. For 
example, there was already the CASP [Critical Assessment of protein Structure Prediction] 
challenge, where the DeepMind [Google] people recently outclassed everyone. There was also 
the DREAM [Dialogue on Reverse-Engineering Assessment and Methods] challenge, financed 
by IBM and which was a bottom-up project where people from the engineering side [of 
research] tried to avoid the ‘my method is better than yours’ kind of self-assessment. And then 
DREAM evolved into Synapse, which was the next big challenge and then became also a 
platform. And TESLA came after all that, and built on challenges that were already there. 
(Informant 2, bioinformatician)

In 2016, the launch of one of the first PICI-funded initiatives, the Tumor nEoantigen 
SeLection Alliance (TESLA) project challenge, followed from an alignment of factors: 
the return of neoantigens to the forefront of cancer immunotherapy research; a prob-
lematic and widespread self-assessment habit in the field of neoantigen algorithmic 
prediction; a new non-profit organization eager to make its way within a network of 
already established, and renowned, partner institutions; and the history of bioinformat-
ics shaped by challenges where research teams compete on the same dataset whose 
correct answers are known only by the challenge organizers. But the TESLA challenge 
was different from most of the other challenges in bioinformatics because it was pri-
marily about producing some of the data materials needed to constitute a new ground 
truth. In other words, unlike most bioinformatics challenges that are ends in them-
selves, the TESLA project challenge was mainly a means to an end, in this case the 
creation of a ground truth to help predict neoantigens in a reliable way. This is what the 
same informant explains when he says:

But here, the new thing is that they used the challenge to build the benchmark. You first had 
teams submitting results, then [the TESLA organizers] used these results to do the validation 
[i.e., the ground truth]. (Informant 2, bioinformatician)

Yet to enroll participants and form a consortium capable of collectively producing—via 
the ‘challenge’ form—a PICI-stamped ground truth for algorithmic neoantigen predic-
tion, the TESLA organizers had to come up with a protocol that was both time-efficient 
and interesting for the participants, but also serious enough to result in a robust dataset 
that could be used by the broader scientific community. In an attempt to accomplish this 
delicate exercise, the TESLA organizers decided to proceed in five steps. First, they 
would make clinical grade genomic data from cancer patients available to participants on 
a secure server. Second, participants would download the data and mobilize their own 
custom algorithms to predict putative neoantigens (called ‘neoantigen candidates’). No 
later than six weeks after downloading the data, each team would be required to provide 
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an Excel sheet describing the characteristics of their predicted neoantigen candidates. 
Third, based on the content of these Excel sheets, the challenge organizers would synthe-
size the candidates and make them pass a series of tests in order to validate or not their 
status of ‘true’ immunogenic neoantigens, that is, neoantigens capable of triggering 
effective immune responses. Fourth, based on the relative number of validated candi-
dates, the organizers would announce the ranking of the different competing teams. 
Fifth, a collective article reviewing the challenge would be published and, in the wake of 
this, the ground truth will be made available online.

However, as audacious and innovative as it was, this protocol was nothing without 
an initial effective dataset: In order to enroll participants in the challenge, the TESLA 
organizers would have to start by having reliable and relevant data for neoantigen pre-
diction in cancer immunotherapy. Fortunately—and this helped suggest the idea of a 
consortium-based project challenge in the first place—among PICI’s partner institu-
tions were several university hospitals engaged in clinical research involving cancer 
patients who had given formal consent for the reuse of their genomic data. And it was 
from this pool of tissue samples—in this case, standard-prepared by MSKCC and 
UCLA lab technicians and then sequenced and translated into a workable format 
(FASTQ) by the bioinformatics teams at the same two institutions—that the TESLA 
challenge organizers were able to tap into. These institutional supports allowed the 
TESLA organizers to quickly assemble a dataset consisting of the normal and cancerous 
exon DNA and RNA sequences of nine patients with metastatic melanoma or lung can-
cer.12 And by putting forward both the scientific interest of a challenge-based ground 
truth to support neoantigen prediction and also interesting clinical grade genomic data 
made available for free on a secure server (Wells et al., 2020, p. e3), the TESLA organ-
izers progressively managed to enroll 28 computational biology teams. From there, 
once the consortium was formally established in December 2016, the TESLA project 
challenge could officially begin.

Scarcity of contested positives

In Fall 2017, the TESLA organizers made available on the Synapse platform the 
anonymized working data of the challenge, namely the FASTQ files of normal and tumor 
DNA and RNA sequences, along with clinical grade HLA typing information13 of nine 
cancer patients. The 28 teams that had agreed to take part in the challenge were given six 
weeks to make their predictions of neoantigens using their own custom algorithms.14 
And the ranked list of these so-called neoantigen candidates, which took the form of 
Excel sheets describing the properties of the peptides, were then sent back to the chal-
lenge organizers.

Once all the ranked lists received, the problem that quickly arose for the organizers 
was the important difference in the number of neoantigen candidates proposed by the 
different teams: While some teams were limited—by virtue of the parameters of their 
algorithm—to the identification of 50 candidates, others went up to 100,000 candidates. 
Besides constituting an advantage for the teams that proposed more candidates, this 
variance also posed a problem for the validation step of the challenge. Indeed, given the 
many costly operations necessary to determine if a candidate is immunogenic—and 
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therefore a true positive—it was impossible for the organizers to test all the proposed 
candidates.

To somehow reduce the number of candidates, the organizers decided to retain, as far 
as possible, the five best candidates from each team as well as all those that were ranked 
highest in the top 50 of all teams. Interestingly, this procedure did not please all the par-
ticipants, some of whom complained that they had proposed candidates that were poten-
tially immunogenic but not sufficiently present in the competing lists to be selected as 
tested candidates. Nevertheless, based on these two criteria—top five ranked and most 
recurrently ranked in the top 50—the organizers came up with a final to-be-validated list 
that included 608 neoantigen candidates.

To get validated neoantigens, the organizers had to set up convoluted and costly vali-
dation experiments. In a nutshell, building on several authoritative papers on antigen 
immunogenicity assessment (e.g. Kvistborg et al., 2012; Sidney et al., 2013), the TESLA 
organizers decided to use two validation experiments—HLA binding and flow cytome-
try—which consist, in very broad strokes, of testing the candidates’ ability to associate 
with purified MHCs and T-cells. Precisely describing the numerous steps and operations 
involved in these two validation experiments is beyond the scope of this article.15 For our 
purposes, it is sufficient to mention that these experiments involved, for each of the 608 
candidates, the creation of about ten samples co-incubated, under different modalities, 
with purified MHC and linked with specially primed T-cells. These numerous operations 
required a great deal of laboratory benchwork, but also ultra-specialized pieces of equip-
ment (e.g. flow cytometers, microscintillation counters) to which even PICI partner insti-
tutions did not have access. To carry out their validation experiments on all the selected 
candidates, the TESLA organizers had therefore to include in the consortium two other 
research centers specialized in immunological assessment: the ImmunoMonitoring Lab 
at Washington University and the Netherland Cancer Institute in Amsterdam (Wells 
et al., 2020, p. e5).

Both HLA typing and flow cytometry validation experiments thus involved a lot of 
specialized equipment and practical operations done by trained personnel. It is little sur-
prise, then, that they took time and money—about 6 months and between $5 and $10 mil-
lion, according to my informants. Nevertheless, once this long, expensive, and tedious 
work was done, the TESLA organizers were able to affirm that they had thirty-seven 
immunogenic neoantigens. In other words, after double-testing the 608 candidates, it 
turned out that thirty-seven of them were ‘true’ neoantigens.

Thirty-seven true positives—or output-targets, according to the terminology some-
times used in applied computer science—may not seem a lot in view of the trillions of 
bytes of genomic text data that constituted the input-data of the ground truth. However, 
these thirty-seven immunogenic neoantigens have the important merit of existing and 
therefore making it possible to build the first benchmarked ground-truth dataset for neo-
antigen prediction, made available online in November 2020 after the publication of a 
collective article in the high-impact journal Cell presenting the TESLA project challenge 
and its implications for personalized cancer immunotherapy research (Wells et  al., 
2020).16

But are the neoantigens described in the TESLA ground-truth dataset really immuno-
genic? After all, they do not directly derive from patient testing; biopsies of patients were 
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brought to laboratories that then synthesized neoantigen candidates and conducted in 
vitro experiments to attest to their binding potential with reconstituted T cells and MHCs. 
Is this indirect methodology robust enough to attest to the veracity of the immunogenic 
neoantigens of the TESLA project? It certainly was in 2018, when standard validation 
tests were performed on the 608 candidates provided by the challenge participants. But 
what if, in parallel to the TESLA project challenge, basic research on neoantigens led to 
different conclusions with regards to immunogenicity testing? Would the veracity of the 
TESLA ground truth’s ‘true’ neoantigens be questioned? In sum, as the foundations of 
the TESLA ground-truth dataset rest on the fragile state of the art of basic immunology 
research, what would happen if the biology of neoantigens happened to change?

Interestingly, this question arose directly after the release of the TESLA ground truth. 
During this four-year symposium-based project—which, again, required great organiza-
tional (e.g. setting up a challenge, collecting candidate lists) and material resources (e.g. 
production of genomic data, validation experiments)—the biology of neoantigens as 
well as how to attest their immunogenicity has partially evolved, as indicated by the fol-
lowing excerpt explicitly referring to the TESLA project:

However, neoepitope immunogenicity in this [TESLA] and other studies was validated by 
experimentally measuring reactivity of existing T cells in patient blood or tumor. Given that 
tumor-specific T cells in advanced tumors are dysfunctional, it is likely that functional readouts 
of these assays are limited by low sensitivity. Additionally, it is possible that therapeutic priming 
against neoantigens overlooked by these assays could unleash productive T-cell responses from 
naive T cells or reservoirs of clonally expanded precursors in lymphoid tissues. (Westcott et al., 
2021, p. 1081)

According to the authors of this recent publication on neoantigen biology (but also others, 
such as Borden et al., 2022; Jaeger et al., 2022), there are robust indications that the stand-
ard in vitro methods used to attest to the immunogenicity of neoantigens are at odds with 
the complex in vivo interactions between neoantigens and potentially dysfunctional 
T-cells. In short, the results of testbed validation experiments no longer correspond 
entirely, in 2021, to what happens on the surface of solid cancers; there tends to be a mis-
match between what happens routinely in heavily equipped laboratories and what hap-
pens in the bodies of cancer patients. And far from only concerning researchers on the 
fringe of bioinformatics cooperation networks, these results are now also recognized by 
computational biologists, as one of the contributors to the TESLA project acknowledges:

I think people realized it for the last two years now that the whole story is more challenging that 
what we thought at first. I think that now [in early 2021], the biology of neoantigens is much 
more complicated. And I think that people understand that the whole story is more challenging 
that what we thought. They understand that even if we assess something as immunogenic, it’s 
not necessarily a clinically effective target. So there are new features here and we will need 
more specific validation to train predictors to deconvolute those [neoantigens] that are 
immunogenic and those that are clinically effective. (Informant 11, bioinformatician)

But does this increased complexity of in vivo neoantigen biology, which calls into ques-
tion the usual in vitro validation experiments, also call into question the relevance of the 
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TESLA ground-truth dataset? Not completely, as it still is—at the time of writing—the 
most comprehensive source of information on the problem of algorithmic neoantigen 
prediction. As the same protagonist of the challenge continues:

So overall now with this [TESLA] data, it’s very useful for us, even if it has limits. And we’re 
using it for benchmarking our pipelines and so on and so forth. You have to recognize the 
quality, the challenge of collecting all these predictions, validating them, testing the peptides, 
etc. So it’s still an important benchmark. (Informant 11, bioinformatician).

The room to maneuver for the algorithmic prediction of neoantigens is quite small. Indeed, 
to include new elements regarding the biology of neoantigens and the way to attest to their 
immunogenicity would imply starting over the whole time-consuming and expensive vali-
dation process. And in any case, as it stands, there is no standardized assay capable of taking 
into account the new issues raised by basic immunology research. In sum, for the TESLA 
project, and also for the many public and private research groups that mobilize this ground 
truth to train and evaluate their predictive algorithms, the medium must be the message. The 
TESLA project has done everything it could to produce an acceptable ground truth: The 
initial working data are clinical grade, the selection of candidates is justified by relevant 
arguments (notably financial ones), and the validation tests are based on well-established 
state-of-the-art procedures. It is not doable, as it stands, to integrate recent discoveries on the 
biology of neoantigens: The TESLA ground truth, because of the massive infrastructure that 
allowed it to come into existence, operates as the foundation of what immunogenic neoanti-
gens actually are for research in computational cancer immunotherapy.

At this point, it is important to note that disregarding the results of basic research on 
neoantigen immunogenicity is a practical imperative: Computational biologists need large 
datasets to train their algorithms, evaluate their performances, and value their results, 
especially to the public and private institutions that fund them. But this imperative, which 
is a condition for the development of AI algorithms aiming at the personalization of can-
cer immunotherapy, has a cost: The algorithms that emerge from infrastructurally massive 
benchmarks such as the TESLA ground truth can only reproduce, and thus promote, the 
specific version of the immunogenic neoantigens inscribed within these datasets.

The TESLA project was thus an act of science, but also an act of faith and power. The 
heaviness of its infrastructure, and the applications that its ground truth enables, tend to 
stifle the other reality of immunogenic neoantigens that is emerging in fundamental 
immunology. In short, because of the stabilized references algorithmic entities require in 
order to come into existence and circulate, applied bioinformatics performs a specific 
reality: In computational cancer immunotherapy—in academia, in the industry, and in 
the numerous start-ups that invest in this promising field of AI-enabled cancer immuno-
therapy—the immunogenic neoantigens are those represented in the TESLA ground-
truth dataset.

Discussion and conclusion

As a conclusion, and at the end of this foray into personalized cancer immunotherapy in 
the making, I would like to discuss two provisional claims.



Jaton	 803

The first one has to do with the centrality of ground-truth datasets in algorithmic 
design. As it has already been said elsewhere (e.g. Mackenzie, 2017), algorithms—or 
rather, those who build them—must approximate the functions that supposedly organize 
the relationships between input-data and output-targets of ground-truth datasets. In this 
sense, for both AI and non-AI algorithms, ground-truth datasets operate as initial matri-
ces and unsurpassable horizons: As the algorithmic form requires a concrete initial refer-
ence, every algorithm emanates from at least one specific ground-truth dataset that 
cannot be transcended (Jaton, 2021b).

Yet just like the algorithms they engender and confine, ground-truth datasets do not 
pre-exist: they derive from collective construction processes. These ground-truthing pro-
cesses engage people, efforts, and resources. Yet, in principle, the products of these pro-
cesses (i.e. ground-truth datasets) remain limited, arbitrary, and socio-culturally oriented. 
Consequently, algorithms—as devices that approximate relationships among ground-
truth datasets—are also limited, arbitrary and socio-culturally oriented.

But this basic assertion leads to questions that remain largely unanswered today. For 
example, do disciplinary contexts affect the deployment of ground-truthing processes? 
And if so, how are these differences expressed? And how do they affect algorithmic 
design, as well as the effects these algorithms, once constituted, may produce? The case 
of the TESLA project indicates that the construction of a biomedical ground-truth dataset 
cannot go beyond the metrological tools available. As we have seen, in order to become 
reliable and publishable (and therefore mobilizable by others), the TESLA ground truth 
had to be based on clinical grade sequencing and immunogenicity validation procedures 
integrated into state-of-the-art pipelines. A biomedical ground-truth dataset like the one 
emanating from the TESLA project is thus as strong, but also as fragile, as the measure-
ment devices that allow it to be constructed. In short, if we get the algorithms of our 
ground truths (Jaton, 2017), we get the ground truths of our organizations and metrologi-
cal equipment. If the measurement rules happen to change, or are the object of controver-
sies, it is the whole ground-truth dataset that oscillates.

However, as we have seen, despite a series of doubts about the protocols for measuring 
the immunogenicity of neoantigen candidates, the TESLA ground-truth dataset continues 
to be used and praised. This is because it is currently the only large ground truth available: 
without the TESLA ground truth, there is no way to build comparable neoantigen predic-
tion algorithms. But the continuous use of the TESLA ground truth is also linked to the 
quality of its constituent relationships, the project’s coordinators having endeavored to 
stick to the then-most recent standards throughout the whole ground-truthing process. In 
this sense, the case of the TESLA challenge seems to indicate the existence of a more or 
less intuitive threshold from which a ground-truth dataset, even if potentially problematic, 
is robust enough for the practitioners who use it. In the case of the TESLA project, many 
precautions have been taken and important means have been mobilized. It is rather unfor-
tunate that new fundamental findings in immunology soon jeopardized part of the ground 
truth’s content, but the dataset remains sufficiently equipped to support valuable, or at 
least promising, propositions. In sum, even though the TESLA ground-truth dataset comes 
up against the current limitations of state-of-the-art immunogenicity assessment proto-
cols, it still manages to reach the quality standards of these protocols, thus justifying its 
continued use for academic and industrial purposes.17
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My second claim deals with what Lee (2022) recently coined ‘ontological overflow’, 
namely the politics of enacting objects. As we saw in the present case study, one of the 
arguments in favor of the TESLA ground-truth dataset is that it is for the moment the most 
robust. The doability (Fujimura, 1987) it generates—immunogenic neoantigens being 
able to be predicted in experimental care configurations by means of commensurable 
algorithms—is considered both precious and unfinished. The actual use of the TESLA 
ground-truth dataset is thus justified by ground-truthing processes to come, which will be 
closer to recent advances in basic immunology research. But for the case of neoantigen 
prediction, how long will it take to build a new ground-truth dataset that will incorporate 
the latest findings on immunogenicity assessment? And in the meantime, where will have 
circulated the algorithms trained and evaluated against the TESLA ground truth as well as 
their predicted neoantigens? And perhaps even more problematically, could the existence 
of the limited-yet-functional TESLA ground truth not also encourage to play down dis-
cordant results in order to keep the relevance of this ground truth? After all, it is the only 
existing dataset that can benchmark neoantigen prediction algorithms, which are them-
selves key elements of clinical trials that may lead to approvals of new neoantigen-spe-
cific therapies from regulatory agencies. Without the TESLA ground truth, personalized 
cancer immunotherapy loses a key element, and hence the importance to actively main-
tain its relevance and ‘construct a particular blindness’ (Lee, 2022).

The purpose here is not to criticize AI-enabled personalized medicine as such. AI 
technologies do seem to be able to help patients with terrible diseases, which is wonder-
fully promising. But it is also important to keep in mind the potentially detrimental 
effects of the ground truths subtending biomedical AI algorithms, notably their readiness 
to stifle discordant realities by virtue of the applications they permit, as well as the more 
or less strategic justifications their usability may suggest. Enforcing limited and socio-
culturally oriented ground-truth datasets is a necessary condition for an AI-enabled per-
sonalized medicine. In this sense, it is certainly important to remain attentive to the 
inertia generated by these often-massive biomedical ground truths as well as to attempts 
to over-advocate their use.
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Notes

  1.	 The historical work of Stevens (2013, 2016) on bioinformatics—which I discuss later in the 
text—is an exception.

  2.	 See also Jaton and Vinck (2023) for a similar argument.
  3.	 Most authoritative immunology textbooks (e.g. Detrick et  al., 2016; Sam-Yellowe, 2021) 

make a distinction between two types of immune systems: the so-called innate immune sys-
tem, which allows for immediate defense against infectious agents without resorting to cell 
division, and the so-called adaptive immune system—of which T cells are key components—
which allows for a belated but potentially longer-lasting protection due to its recourse to cell 
division.

  4.	 The term ‘neo-antigen’ first appeared in a 1965 paper by Riggs et al. on the in-vitro detec-
tion of antigens by immunofluorescence. According to these authors, the term was initially 
coined by Robert Huebner—a then-influential researcher on virus-specific antigens—during 
a personal communication. As of 2015, the term ‘neo-antigen’ progressively lost its hyphen.

  5.	 There are two main classes of MHC, often called MHC I and MHC II. Both classes present 
epitopes (i.e. fractions of proteins) to T cells, but they do not go through the same processes 
and do not target the same T cell receptors. Until now, most of the research on neoantigens 
has focused on their presentation via MHC I and associated T cell receptors.

  6.	 It is important here to mention a difference between the terms ‘neoepitope’ and ‘neoantigen.’ 
In the specialized literature, the term ‘neoepitope’ refers to the result of the degradation of 
mutated proteins in cancer cells. These neoepitopes are then presented, via the MHC, to the 
surface of the cancer cell as neoantigens. For the sake of simplicity, I mainly use the term 
neoantigens here, even though it sometimes refers, technically, to neoepitopes.

  7.	 In May 2020, BioNTech acquired the start-up Neon—active in the field of neoantigen-spe-
cific adoptive cell therapy—for $97 million. More recently, BioNTech also acquired Kite 
Pharma’s neoantigen T cell receptor (TCR) platform for an undisclosed amount.

  8.	 More generally, these two anticancer experimental treatments can be read as ‘informing mate-
rials,’ that is, instrumental developments for curing individual cancers but also for ‘exploring 
cancer pathways and mechanisms that lead to new biological, pathological, and therapeutic 
insights into the etiology and evolution of cancer’ (Vignola-Gagné et al., 2017, p. 10).

  9.	 This is not an entirely new phenomenon. Synergies between the computing industry and 
genomics had already emerged in the 1990s, during the progressive ‘textualization’ of 
genomes. Indeed, as Stevens (2016) showed with great clarity, the advent of second-genera-
tion sequencing technologies and the underlying need to reconstruct complete genomes con-
tributed to the development of a multitude of sequence matching and alignment algorithms 
(e.g. BLAST in the late 1980s, TIGR in the mid-1990s), soon marketed as software solu-
tions by tech companies. Interestingly, the companies that participated in this first effective 
rapprochement between genomics and the tech industry (e.g. Paracel, Celera Genomics and 
Hewlett-Packard) were already located in the Bay Area.

10.	 For the case of the US, Anheier and Daly (2005, p. 160) make a useful distinction between 
‘philanthropy’ and ‘charity,’ the latter corresponding closely to the objectives explicitly put 
forward by the Parker Foundation: ‘In the US, the term ‘charity’ refers to giving for the pur-
poses of addressing the symptoms of an issue or problem, whereas ‘philanthropy’ refers to 
giving that seeks to address the causes of an issue’ (Anheier & Daly, 2005, p. 160).

11.	 Dana-Farber Cancer Institute also joined PICI network in 2017.
12.	 Metastatic melanoma and lung cancer were considered, by then, among the most appropriate 

solid cancers for neoantigen-specific therapies.
13.	 HLA stands for human leukocyte antigens. HLA typing refers to the process of listing patients’ 

HLA molecules to assess the compatibility of transplantations.
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14.	 Three teams did not manage to submit their complete list of candidates in time. They were 
therefore withdrawn from the challenge, which ultimately involved 25 teams.

15.	 For curious readers, the TESLA article published in Cell summarizes these different steps 
quite precisely in its ‘method details’ section (Wells et al., 2020, p. e4).

16.	 As the paper published in Cell puts it: ‘Data from TESLA are available for download and 
serve as an open benchmark to accelerate the development of neoantigen-based therapies 
(https://www.synapse.org/#!Synapse:syn21048999)’ (Wells et al., 2020: 2).

17.	 These differentiated ways to evaluate the quality of ground-truth datasets supporting algo-
rithms directly echoes Lee and Helgesson’s (2020) proposition that bioscience actors engage 
in delicate and ambivalent practices of valuation with regards to the computational devices 
they are brought to design and use.
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