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Assessing biases, relaxing moralism:
On ground-truthing practices in
machine learning design and application

Florian Jaton

Abstract

This theoretical paper considers the morality of machine learning algorithms and systems in the light of the biases that

ground their correctness. It begins by presenting biases not as a priori negative entities but as contingent external

referents—often gathered in benchmarked repositories called ground-truth datasets—that define what needs to be

learned and allow for performance measures. I then argue that ground-truth datasets and their concomitant practices—

that fundamentally involve establishing biases to enable learning procedures—can be described by their respective

morality, here defined as the more or less accounted experience of hesitation when faced with what pragmatist phi-

losopher William James called “genuine options”—that is, choices to be made in the heat of the moment that engage

different possible futures. I then stress three constitutive dimensions of this pragmatist morality, as far as ground-

truthing practices are concerned: (I) the definition of the problem to be solved (problematization), (II) the identification

of the data to be collected and set up (databasing), and (III) the qualification of the targets to be learned (labeling). I finally

suggest that this three-dimensional conceptual space can be used to map machine learning algorithmic projects in terms

of the morality of their respective and constitutive ground-truthing practices. Such techno-moral graphs may, in turn,

serve as equipment for greater governance of machine learning algorithms and systems.

Keywords

algorithms, machine learning, artificial intelligence, bias, ground truth, morality

I cannot understand regret without the admission of

real, genuine possibilities in the world. Only then is it

other than a mockery to feel, after we have failed to do

our best, that an irreparable opportunity is gone from

the universe, the loss of which it must forever after

mourn. (James, 1912: 176)

Fragility is not the opposite of solidity, duration or

solemnity of things, it is not on our margins, it is nei-

ther a defect to be repaired nor a temporary state, it is

our common fate. (Hennion and Monnin, 2020: 1. My

translation)

Introduction

Machine learning (ML) algorithms—computerized

methods of calculation that infer rules of computation

from sets of data to make predictions and support

decision-making tasks—are now powering many

commonly used devices such as Web search engines
(Richardson et al., 2006), social media applications
(Hazelwood et al., 2018), online purchasing platforms
(Portugal et al., 2018), and surveillance systems
(Chokshi, 2019). In reaction to the growing ubiquity
of these statistical methods of computation—that
have greatly participated in the resurrection of artificial
intelligence (AI)—scholars in Science and Technology
Studies (STS)1 have accounted for some of their con-
stitutive relationships (Bechmann and Bowker, 2019;
Crawford, 2021; Grosman and Reigeluth, 2019;
Jaton, 2017, 2019, 2021; Neyland, 2019). By providing
fine-grained depictions of ML algorithmic systems,
these works have effectively acted as provisional
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countermeasures to the promotional rhetoric of AI
over-enthusiasts and provided seminal means for great-
er governance of algorithmic systems (Radfar, 2019;
Shellenbarger, 2019).

Among the issues these studies helped to bring to
light, the problem of biases—unquestioned and contin-
gent sociocultural habits that orientate output calcula-
tions—has certainly received the most attention. From
the European Commission (AI HLEG, 2019) to IBM
(McDade and Testman, 2019), and McKinsey (Silberg
and Manyika, 2019), the so-called AI bias problem—
generally associated with ethics and morality
(Mittelstadt et al., 2016)—is now one of the most fre-
quently discussed topics. Although salutary in many
respects, this rush toward the issue of AI bias has led
to some confusion, prompting several authors to take
steps toward clarifying the situation. What are biases?
How can one spot them? Should they be stamped out?
Under the threat of an AI ethics-washing (Wagner,
2018) that allows powerful industrials to take refuge
in intellectual vagueness, it seems more important
than ever to analyze the elements at stake and specify
the objects of debate. In the wake of recent efforts
made by Barocas et al. (2017) and Mittelstadt (2019),
this paper contributes to providing conceptual tools
capable of further refining the notion of bias and
making it somewhat more operational.

To do so, this paper begins by introducing a positive
view on biases. Instead of considering them as intrinsi-
cally deleterious, it appreciates biases as necessary, yet
contingent, external referents. Often gathered in repos-
itories called ground-truth datasets (Grosman and
Reigeluth, 2019; Henriksen and Bechmann, 2020;
Jaton, 2017), these constructed external referents oper-
ate as supervisors of learning processes: They define
what needs to be learned and allow for performance
measures. The paper then shows that these supervising
biases concern a wide range of ML algorithms: As
recent studies indicate, computer scientists have to con-
front—and be biased by—ground-truth datasets while
shaping and implementing supervised and unsupervised
ML algorithms. I then argue that these ground-truthing
practices—that fundamentally involve establishing
biases to enable learning procedures—can be described
by their respective morality, here defined, in the wake
of pragmatist philosopher William James, as the more
or less accounted experience of hesitation when faced
with “genuine options” (James, 1912)—that is, choices
to be made in the heat of the moment that engage dif-
ferent possible futures. I then stress three constitutive
dimensions of this pragmatist morality, as far as
ground-truthing practices are concerned: (I) the defini-
tion of the problem to be solved (problematization),
(II) the identification of the data to be collected and
set up (databasing), and (III) the qualification of the

targets to be learned (labeling). I finally suggest that

this three-dimensional (3D) conceptual space can be

used to read ML algorithmic projects in terms of the

morality of their respective and constitutive ground-

truthing practices. Such techno-moral graphs may, in

turn, serve as equipment for greater governance of AI

systems. In the conclusion, I briefly expand on the out-

lined propositions.

Learning to be biased: On the centrality of

ground truths

Examples of what Noble (2018) coined algorithmic

oppression abound: search engines that marginalize

women (Carpenter, 2015); health prediction algorithms

that consider Black patients riskier than White patients

(Obermeyer et al., 2019); recommendation algorithms

favoring violent, racist, and misogynist content (Hao,

2019); and crime prediction systems whose scores are

more influenced by skin color than by criminal record

entries (Angwin et al., 2016). These harmful biases

must be fiercely criticized and combated. In order to

do so, they must be identified through insightful statis-

tical inquiries (Courtland, 2018) but also, which tends

to be taken for granted, through the affirmation of

universal moral precepts such as fairness and equality.

While such principles are not easy to describe rigorous-

ly (Verma and Rubin, 2018), it is still possible to rough-

ly outline them and agree on the worldviews they

suggest.
This moralism—in the sense of a confident attitude

toward the moral values to be defended—is crucial

today, not least in order to infuse political affections

into the thematic universe of ML algorithms that, not

so long ago, was still confined to mere technical con-

siderations (Jaton and Vinck, submitted). However,

framing the still-to-be-fought algorithmic oppression

mainly in terms of bias (in singular) runs the risk of

not being taken seriously, or at least, as suggested by

Manders-Huits and Zimmer (2009), of not being

invested with meaning by some of the people who

may be very much concerned with the issue: computer

scientists who work every day, in academia and indus-

try, to shape new ML algorithmic tools.
To understand this risk of expert disbelief in ML

bias as this notion is described in the critical literature

on algorithms, it is needful to turn to another, older

discourse that has progressively become quite inaudible

outside the spheres of computer science. This classical

and authoritative view comes from Tom Mitchell’s pio-

neering work on statistical learning. As early as 1980,

he showed that biases—understood as external and

arbitrary sources of information2—are necessary for

the inductive leap underlying any learning process.
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This specific instance of what Bowker and Star (2000:
111–123) call the bootstrapping problem led Mitchell to
argue, in turn, that an unbiased learning algorithm
would be senseless:

Although removing all biases from a generalization

system may seem to be a desirable goal, in fact the

result is nearly useless. An unbiased learning system’s

ability to classify new instances is no better than if it

simply stored all the training instances and performed a

lookup when asked to classify a subsequent instance.

(Mitchell, 1980: 2)

In short, no biases, no learning: As Domingos recently
summarized: “in ordinary life, bias is a pejorative word:
preconceived notions are bad. However, in machine
learning, preconceived notions are indispensable; you
can’t learn without them” (Domingos, 2015: 64).

Put crudely, then, biases are crucial for ML: Any
classification task needs a referent that lies outside of
the task in order to ground its classificatory principle.
The centrality of ground-truth datasets (Figure 1) for
the training and evaluation of new ML algorithms is
a striking illustration of this necessity: Without bench-
marked databases that provide the referents of what
ML algorithms must find (Henriksen and Bechmann,
2020), no learning operation is conceivable since there
is no a priori indication of what is appropriate to learn.
Removing all biases from ML algorithms—as it is

sometimes suggested (Gibney, 2020)—would therefore
be tantamount to removing central parts of what allowed
them to come into existence, namely the contingent, yet
necessary, external referents that operate as their initial
impetus. For the specific case of ML algorithms and
systems, morality seems then obliged to deal with this
state of affairs visible as soon as one walks through the
door of a computer science laboratory (Jaton, 2021):
A bias-free ML algorithm is an oxymoron.

The supervision of the “unsupervised”:

From ground truths to ground-truthing

Before moving forward and further examining the issue
of morality with regard to the ground truths that bias—
and enable—learning operations, it is important to look
more precisely at another technical discussion related to
ML algorithms. Papers and manuals on statistical learn-
ing methods are extremely numerous and varied.
However, in this innovative and constantly changing
nebula, one notion remains stable: that of supervision
(and its opposite, unsupervision). With the possible excep-
tion of the category of “reinforcement learning”—which
I will not discuss in this paper—computerized methods
of calculation inferring classification or regression rules
from aggregated data—what I refer to here as ML algo-
rithms—are indeed divided, in the specialized literature,
in two main families: supervised and unsupervised.
This is a widely shared, standard statement: Supervised

Figure 1. Taken from Yang et al. (2016), sample from WIDER FACE ground-truth dataset. On the left, one among the 32,203 images
of the publicly available dataset for face-detection research. In the middle, the face annotations for this specific image. Since each
annotation belongs to the coordinate space of the digital image, it can be expressed by a set of four numerical values, the first two
expressing the start position of the label along the x and y axes, the third one expressing the number of pixel wide, the fourth one
expressing the number of pixels high. This numerical information, that correspond to the bounding boxes of the image on the right,
were produced manually by one human annotator and cross-checked by two others (Yang et al., 2016: 5527). As such, they constitute
the ground truth of the image with regard to face detection; they bias the input data in order to provide something to learn and
formulate. The images and their labels can then be used to train supervised ML algorithms to recognize faces in photos, the ground-
truth dataset operating as the list of the very best answers to such task.
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algorithms for which an external supervisor “provides
the correct values, and the parameters of a model are
updated so that its output gets as close as possible to
these desired outputs” are fundamentally different from
unsupervised algorithms that do not require any super-
visor and whose purpose is “to find the regularities in the
input, to see what normally happens” (Alpaydin, 2016:
112). To put it in equivalent terms, while supervised
algorithms need a ground-truth dataset gathering input
data and manually constructed output targets in order to
learn the predictive rules of computation, unsupervised
algorithms rely only on input data to detect patterns and
regularities.

For academic and industrial researchers who recog-
nize this fundamental distinction (i.e., the vast majori-
ty), further development of unsupervised ML
algorithms carries with it great hope since these algo-
rithms do not depend, theoretically, on any external
supervision of the input data. Substantial gains in
time, resources, and purity are explicitly envisaged:
Because unsupervised ML algorithms use only the
information contained in their “raw” learning data,
they would not be concerned with the formation of
costly ground-truth datasets whose labels are tedious
to produce and potentially influenced by the sociocul-
tural habits of their human generators and curators.
The sheer enthusiasm for unsupervised ML algorithms
is evidenced in the now famous “cake analogy” pro-
posed by Yann LeCun, one of the main initiators of
convolutional neural networks and the winner of the
prestigious Turing Award in 2018 (with Yoshua Bengio
and Geoffrey Hinton), where “the bulk of the cake is
unsupervised learning, the icing on the cake is super-
vised learning, and the cherry on the cake is reinforce-
ment learning” (LeCun, 2016).3

It would be incorrect to assert that this distinction
between supervised and unsupervised ML algorithms is
erroneous: When considered from a confined, theoret-
ical perspective, unsupervised ML algorithms are not
bounded to ground-truth datasets gathering input data
and output targets, whereas supervised ML algorithms
are. However, when considered “in the wild”
(Hutchins, 1995), which is from a down-to-earth per-
spective, one realizes that the story is more intricate: It
is indeed attested that ground truths and their concom-
itant referential practices do in fact impact, albeit in a
less visible way, the practical shaping and use of ML
algorithms presented as “unsupervised.”

The first way to consider the subtle attachment of
unsupervised ML algorithms to ground truths is simply
to read recent award-winning papers presenting new
unsupervised ML algorithms, such as Wan et al.
(2019), Lorenz et al. (2019), Fu et al. (2019), and Liu
et al. (2019).4 Although these (quite) arbitrarily selected
papers are all related to computer vision and image

processing, each deals with a different problem: 3D
hand pose estimation for Wan et al., part-based disen-
tangling of photographed objects for Lorenz et al.,
image translation from one domain (e.g., natural pho-
tograph) to another (e.g., painting) for Fu et al., and
optical flow estimation for Liu et al. Moreover, each
paper attempts to convince readers of the relevance and
efficiency of its unsupervised ML algorithm. Also, in
the specific evidence-production regime of applied
computer science, the acceptable way to do so is to
rely on a ground-truth dataset—also called a bench-
marked dataset—containing human-produced labels
and operating as a measurement reference capable of
generating statistical results (see Figure 2). For each
paper, the very topic of the computational operation
is framed by, and dependent on, the availability of a
ground truth previously constructed and used by other
groups of researchers to develop and compare super-
vised ML algorithms.5 It thus appears that even though
these unsupervised ML algorithms do not rely upon
any labeled ground truth for their learning tasks, they
need available ground-truth datasets to attest to the
significance of their results. Rather than a technical
necessity, this is a practical imperative: Without refer-
ring to a ground truth operating as a yardstick between
competing algorithms, the aforementioned research-
ers—but also, I believe, many others—cannot quanti-
tatively measure the performances of their algorithms
according to the standard statistical measures and
cannot, therefore, make their algorithm exist within a
searchable and quotable paper. This practical impera-
tive is linked to the fact that unsupervised ML algo-
rithms are not intended to remain theoretical: They are
designed to be ultimately used and worked upon, which
implies comparing them to benchmarked ground-truth
datasets in order to show their relevance and efficiency.
And if ground truths—together with their labels (and
their biases)—are not necessary for the definition of the
algorithms’ learning functions, they remain essential to
make them exist as devices producing valuable results.

Another reason why unsupervised ML algorithms
remain attached to, and biased by, supervised “truths”
can be understood by exploring the backstage of com-
puter science work. Using the genre of autoethnogra-
phy in an interdisciplinary data analysis laboratory,
Bechmann and Bowker (2019) documented the incon-
spicuous supervisory operations involved while apply-
ing an unsupervised algorithm (the Latent Dirichlet
Allocation model Text2vec) to Facebook user data.
As they made clear, an irremediable succession of arbi-
trary (but justifiable) choices were necessary to produce
results that made sense by virtue of the research ques-
tion, itself reworked as the multilateral relationships
between the collected survey data, the provisional
results produced by the algorithm, and the interpretive
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work unfold. Bechmann and Bowker convincingly
showed, in turn, that in order to make the unsupervised
algorithm operational, it was crucial to supervise its
end-to-end deployment—that is, to refer to elements
a priori external to the algorithmic process per se
(e.g., their own values, doubts, disappointments, ambi-
tions) in order to ground its correctness. As they sum it
up: “a seemingly unsupervised model becomes extreme-
ly supervised due to classification work such as setting
number of topics, cleaning data in a particular way
with an a priori understanding of ‘meaningful’ clusters
and interpreting clusters with parent classes manually”
(Bechmann and Bowker, 2019: 7).

This second occurrence of biased supervision within
the deployment of unsupervised ML algorithms sug-
gests the need to somewhat extend the notion of
ground truth. Indeed, in the case study of Bechmann
and Bowker, a ground-truth dataset had not really
been involved because the developers did not directly

refer to assumedly correct, labeled responses listed in a
benchmarked dataset as the authors of the image-
processing papers mentioned earlier did. Yet, in
effect, “truths” have been grounded—and biases estab-
lished—because the researchers did refer to external
sources of information (e.g., research questions, inter-
pretations of results) that, in the end, attested to the
correctness of the applied algorithm: Without their
supervision work, the researchers could not make the
“unsupervised” ML algorithm produce results useful to
their research. Here, turning the notion of ground truth
into a gerund seems somewhat necessary: Since the
design and application of an unsupervised learning
algorithm must, apparently, refer to elements that lie
outside of its own functioning to effectively support
and prove its efficiency and correctness, one should
rather talk about ground-truthing rather than ground
truths. If one sticks to the noun form, great are the
risks to invisibilize the subtle grounding practices

(a) (b) (c)

Figure 2. Two evaluations of Liu et al.’s (2019) unsupervised ML algorithm (ours). On top, qualitative evaluations of Liu et al.’s
algorithm with respect to Sintel (Butler et al., 2012) and KITTI (Geiger et al., 2012; Menze and Geiger, 2015) ground-truth datasets for
flow estimation. On bottom, quantitative comparisons between the performances of Liu et al.’s algorithm (ours) and previously-
published algorithms with respect to Sintel and KITTI ground-truth datasets. The main performance metrics for these datasets is the
average endpoint error: the overall comparison between the estimated optical flow vectors provided by the algorithm and those
provided by the ground truth. KITTI 2012 and its augmented version KITTI 2015 also include the percentage of erroneous pixels of the
algorithms’ estimations. Except on the Sintel Clean test set, Liu et al.’s unsupervised algorithm outperforms all the others. The
outperforming results are highlighted in bold. Source: Taken from Liu et al. (2019: 4–5), reproduced with the permission of the IEEE,
31 March 2021, 5039350523845, Pengpeng Liu, June 2019.
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taking place during the design and implementation of
seemingly unsupervised algorithms.

At the risk of proposing a redundant expression—
but, sometimes, a little redundancy does not hurt—I
propose calling ground-truthing practices the heteroge-
neous courses of actions aimed at attesting to the cor-
rectness of a computerized method of calculation.6

Such practical biasing operations may range from the
early problematization of an algorithmic project to the
arbitrary selection of the relevant data and the actual
construction, publication, and use of benchmarked
ground-truth datasets (more on this later). Although
these practices do not, by far, cover the whole process
of algorithmic design—moments such as the mathe-
matical characterization of the relationships between
input data and output targets or the actual writing of
computer code refer, for example, to qualitatively dif-
ferent processes (Jaton, 2021)—they nonetheless repre-
sent a non-negligible part of it. More than just setting
up referential repositories, ground-truthing practices
also support and make possible the very correctness
of computerized methods of calculation.

Morality as collective hesitation

Both supervised and unsupervised ML algorithms are
attached to ground-truthing practices in order to be
shaped, published, and applied in real-world situations.
Without practical efforts to attest to ML algorithms’
correctness and, therefore, temporarily move away
from their technical functioning to establish biases
and ground their efficiency, most ML algorithms
could not exist and not a single one could be effectively
used. Ground-truthing practices and the many biases
they allow to be established are part and parcel with the
constitution of ML algorithms: They contribute to
making them designable, commensurable, and even,
sometimes, efficient and useful.

By including this small realistic modality—ML algo-
rithms need constructed and more or less contingent
referential biases to show their correctness and come
into existence—another landscape soon unfolds.
Instead of irresistible ventures confidently inserting
the depths of human cognition into digital devices,
computer science industry, and, more particularly, its
applied subdomains such as computer vision and image
processing, start to appear radically fragile and uncer-
tain. Indeed, a single change in the ground-truthing
practices underlying the shaping and use of an ML
algorithm could be enough to significantly modify its
tenor. For the Facebook data analysis project consid-
ered by Bechmann and Bowker, a somewhat different
problematization of the research effort would have led
to quite different algorithmic results. The same is true
for the work of the computer scientists mentioned

above: A single change in the ground-truth datasets
used to prove their results (e.g., a different question
asked to the human annotators who labeled the collect-
ed data, different choices regarding the extraction and
curation of the labels) would have led to the develop-
ment of different unsupervised ML algorithms since
they would have had to confront different ground
truths. By stressing the ground-truthing practices
underlying the shaping and use of ML algorithms,
one highlights a trivial but often forgotten feature of
computer science research and industry: It could be
otherwise.

Hence, occasionally, a certain surprise on reading
accounts of the shaping or application of ML algo-
rithms. Even though what underlies the correctness of
these models—which triumphantly permeate our daily
lives—is often the result of contingent and arbitrary
processes, few authors publicly admit to this constitu-
ent fragility and document the ins and outs of the alter-
natives that have been, at some point, available to them
(Geiger et al., 2020). To put it in another, more philo-
sophical way, while the ground-truthing work subtend-
ing ML algorithms is punctuated by irremediable
choices, relatively few accounts explicitly attest to
what pragmatist philosopher William James (1912)
classically called “genuine options”—that is, choices
to be made in the heat of the moment that engage dif-
ferent possible futures or, in our case, different possible
learning-enabling biases. What happens in these
ground-truthing moments is indeed decisive, for as
the biases implemented by computer experts will
strongly frame what will later become, perhaps, a con-
sulted ML model easily enrollable in broader corporate
systems.7 Could the morality of ML lie, at least in part,
in these genuine options, moments when expert hands
may shiver at the idea of grounding a “truth” that will
then be reproduced, and thus promoted,
computationally?

It is one of the many merits of James’ philosophical
work—and his contemporary interpretations (Hache,
2011; Hennion and Monnin, 2020)—to have detected
the moral tonality of these moments of hesitation
where actors are attentive to the fragility of what
they are accomplishing. Contrary to the Kantian tradi-
tion which considers morality as the result of a judg-
ment subtended by a universal law,8 the pragmatist
tradition considers morality as the temporary experi-
ence of, and inquiry into, concerns and scruples. The
turning around is thus complete: Instead of considering
morality as compliance with a transcendent norm,
morality is considered as the follow-up on the spark
of a genuine option, triggering in turn an investigation
of the ins and outs of a situation of uncertainty. During
pragmatist moral experiences, what was initially con-
sidered a simple means (e.g., a crowdsourcing
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company, a ground-truth dataset, a research direction,
an evaluation metrics) is transformed, temporarily, into
an end whose trajectory depends on many other inter-
twined entities. And it is the uncertain exploration,
long or short, of the connections between these entities
that constitutes the specific signature of morality.

Considering morality as what is happening when
there is an investigation on the fragilities and uncer-
tainties of a genuine option that sparks may sound
odd at first, but it effectively addresses a mundane,
increasingly common experience: that car I drive, that
meat I grill, or that search engine I use; these a priori
unproblematic entities become frantically animated as
my scruple sets in and my investigation unfolds. That
car soon connects needs for mobility with workers in
Northern France and birds stuck in oil spills; that meat
soon connects clich�e summer partying with traceability
networks and fertilizers for fodder fields; and that
search engine soon connects urgent desires for access
to certified references with new forms of alienations
subtending digital capitalism: As soon as a scrupulous
doubt as to a means turns it into an end, a relational
experience is set in motion that brings about many
intertwined human and nonhuman entities. As Hache
pointed out, this problematization “engages a concep-
tion of relational morality in which one cannot be
moral on one’s own” (Hache, 2011: 52. My transla-
tion); the intermingling operated during the more or
less long moments of hesitant investigation turns
moral experiences into collective enterprises.

From this, it follows that morality—in its pragmatist
understanding—can blossom in some settings and
wither away in some others. Certain arrangements
can favor great moral development by valuing the
expression of doubt and the hesitant exploration of
scruples, to the point of even instituting them—some-
times—as a working habit.9 Conversely, other arrange-
ments can, voluntarily or not, repress moral
development, thus making what Latour calls the
“emission of morality” (Latour, 2012: 454) inaudible.
In these constricted settings, scruples are stifled; hesi-
tations as to the distinction between means and ends
are ignored; genuine options are pale glimmers, practi-
cally invisible and incapable of suggesting anxious
inquiries.

Pragmatist-inspired morality is thus what is happen-
ing when there is a collective exploration of the fragil-
ities and uncertainties of a genuine option that sparks.
During moral moments—whose development can be
sustained or repressed—means are temporarily turned
into problematic ends through concerned and hesitant
collective inquiries. From there, if we return to ML
algorithms and take the point of view of those who
work every day to build new robust and innovative
ones (who may be different from those who talk

about ML and AI during keynotes and distinguished
lectures), two opposite ways of experiencing ground-
truthing practices emerge. Either ignore (or keep
quiet) the genuine options that dot ground-truthing
practices and consider their constituent elements as
unproblematic means for the completion of the algo-
rithmic project; or, at the other end of the spectrum, be
systematically sensitive to the scruples and uncertain-
ties. Variable intensities are, of course, conceivable, but
it seems a priori fair to posit that ML designers go
through differentiated moral experiences that could be
summarized as follows: being more or less eager (or
encouraged) to confront and unfold the fragility of
ground-truthing practices; being more or less eager
(or encouraged) to respond to what they are bound
to while building referential bases for the proper shap-
ing and deployment of ML algorithms.

By virtue of the perspective adopted in this paper,
ground-truthing practices (and the biases they estab-
lish) contributing to ML algorithmic projects are then
not always morally equivalent: Some are more sensitive
to the irruption of genuine options and the exploration
of their underlying uncertainties than others (see
Figures 3 and 4). Also, without suspecting anyone of
negligence, one may consider that many current ML
projects are not especially moral in the sense defined
here. There are numerous reasons for this, and the race
for valuable innovation and publication is certainly
part of the phenomenon (Mirowski, 2011). However,
the sheer act of attributing the adjective
“unsupervised” to highly supervised—and thus
biased—algorithms may illustrate a lack of sensitivity
to, and emphasis on, the hesitation between the means
and ends of many contemporary ML developments
(Geiger et al., 2020).

However, more and more organizations are begin-
ning to show, through their actions, that the moral
issue of algorithms is an integral part of their concerns.
By opening their doors to sociologists, philosophers,
journalists, anthropologists, or ethnographers and, in
particular, encouraging them to document the practices
by which “truths” are instituted in order to establish
the correctness of algorithms being shaped and used,
the data analysis laboratory mentioned by Bechmann
and Bowker (2019), the image-processing laboratory
followed by Jaton (2017, 2021), the European automat-
ic surveillance projects studied by Grosman and
Reigeluth (2019) and Neyland (2019), or the
Scandinavian AI firm investigated by Henriksen and
Bechmann (2020) show, for example, a genuine desire
for morality, understood as a propensity to make more
explicit, and therefore real, the exploratory hesitations
and doubts contributing to algorithmic projects. The
current situation seems then to be quite mixed:
Whereas many algorithm-related organizations,
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especially the most powerful ones, are frankly reluctant

to make hesitations and uncertainties visible and thus
favor the modernist path of inevitable mastery

(Pasquale, 2016), others, fewer in number but

nevertheless increasingly present, are ready to make

the morality of the devices they build positive. By invit-

ing lay actors to co-investigate with computer science

professionals on algorithmic work cases, these ecolog-

ical institutions—in the sense of institutions sensitive to

networks of interdependencies (Latour, 2017)—agree

to be accountable for some of their actions and, thus,

accept to become more response-able. This is some-

thing important to point out: In computer science

and industry, morality is nowadays actively opposed

but also supported (albeit still tentatively).

Toward techno-moral graphs: Problems,

data, and labels

If we accept to consider morality as the act of respond-

ing to what Latour (2004: 216) calls “the generalized

revolt of means” by embarking on collective investiga-

tions of genuine options—and thus distinguish it from

moralism understood as the important, yet sometimes

limited, injunction to observe universal moral pre-

cepts—it still remains, in our case, to somewhat specify

the environment in which this morality can be

deployed. At this point, the term “ground-truthing

practices” remains too vague to hope to detect moral

Figure 3. Schematics of ground-truthing practices sensitive to encounters with genuine options. Let us imagine ground-truthing
courses of action using means (e.g., benchmarked ground-truth datasets, evaluation metrics) as part of an ML algorithmic project.
When doubts arise regarding a means (genuine option 1), this scrupulous hesitation temporarily shifts the project to exploring the
issues underlying the option, considering and, eventually, rejecting (or embracing) sets of possible futures (vertical dotted arrows).
Once the investigation has been provisionally completed—making the end become, temporarily, an acceptable means—the design
decision as to the genuine option moves the project forward to, potentially, another genuine option (genuine option 2) whose fragility
triggers, in turn, another collective exploration of the whys and wherefores of the uncertain situation.

ground-truthing activities

possible futures

= means
= end

Figure 4. Schematics of ground-truthing practices not sensitive
to encounters with genuine options. In this case, the ground-
truthing courses of action have not encountered/made appear
any genuine options. No form of hesitation has turned a means
into an end. The progress is straight-line and does not expres-
sively take into account alternative futures.

8 Big Data & Society



differentials with regard to the contingent, yet crucial,
biases that make ML algorithms possible and usable.
How can one see more clearly in this imbroglio that I
call “ground-truthing practices”?

One may start by pointing out something that is
trivial in hindsight: The problem an ML algorithm
solves is not a priori given; it is the result of problem-
atization practices aimed at establishing the terms of a
problem that can be solved computationally. The insti-
tutional, and contingent, definition of algorithms as
“computerized problem-solving methods” may have
contributed to putting aside the basic fact that prob-
lems that aim to be solved by algorithms are temporary
results of processes engaging habits, desires, skills, and
values (Jaton and Vinck, submitted). As Lehr and Ohm
nicely summarized, for ML algorithms whose tasks are
to predict and estimate something, “the first step of any
analysis is to define what that something should be and
how it should be measured” (Lehr and Ohm, 2017:
672–673. Emphasis in the original).

A first dimension of ground-truthing practices may
then refer to the courses of action that participate in
problematizing a state of affairs. Here, the external
referents, or biases, to be defined are the terms of the
problem the algorithm will have to solve. The image-
processing project followed by Jaton (2017) is illustra-
tive in this respect. In order to launch their project of a
new image-processing algorithm for saliency detection,
the computer scientists had to start by critically exam-
ining the state-of-the-art literature, notably by equip-
ping themselves with authoritative—and highly
indexed—papers in philosophy and cognitive science,
and by imagining new industrial applications based on
their criticism. I shall group under the term
“problematization” this type of practical work that
can take many different forms but still consists, ulti-
mately, in making a situation problematic and present-
ing the would-be algorithm as a solution potentially
generating positive differences.

A second dimension specific to ground-truthing
practices, and the biases they contribute to establishing,
can be detected with another trivial observation:
Algorithms, especially ML ones, need sets of data.
This aspect of the preparatory work required for the
shaping and use of ML algorithms was made particu-
larly visible in recent years by the (temporary) advent
of the term “Big Data” and, simultaneously, by more
or less successful attempts to enforce data privacy.
Unsurprisingly, then, it is in the fields of law and
ethics that one finds the most refined explorations of
the issues related to the massive online collection and
organization of digital data to be transformed into
“raw” materials for the shaping of ML algorithms
and systems (Barocas and Selbst, 2016; Custers et al.,
2012; Lehr and Ohm, 2017). Building upon these

important works to further specify the heterogeneity
of ground-truthing practices, I shall call “databasing”
the actual work of collecting, compiling, organizing,
and cleaning the data to be used for the shaping and/
or training of new ML algorithms. As its name sug-
gests, this particular dimension of ground-truthing
practices—which often takes place in parallel with prob-
lematization activities and impacts on them—cannot be
reduced to the collection of data alone. It also includes
choices and actions contributing to the aggregation,
probing, organization, and cleaning—in short, the set-
ting up—of what may be called at some point the “raw”
data (Gitelman, 2013; Jaton and Vinck, 2016).

Finally, a third dimension specific to ground-
truthing practices is to be found in the categories or
labels (or output targets) that are superimposed on the
collected “raw” input data by means of more or less
standardized devices and procedures. As summarized
by Grosman and Reigeluth, this refers to the

“ground truth” part of the term “ground-truth data-

set”: the categories or labels which humans—for exam-

ple, domain experts, computer scientists or Amazon

turkers—have attributed to each sequence. It supplies

the system with answers to the problem: the algorithm

now has an external check for assessing the correctness

of its classification. (Grosman and Reigeluth, 2019: 3)

The increasing availability of crowdsourcing services
proposed by companies such as Amazon (via
Amazon Mechanical Turk) or ClickWorker since
2010 had a considerable impact on the production
capacity of labels and, as a result, on the proliferation
of algorithms capable of retrieving and thus reproduc-
ing (and promoting) these labels.10 Consequently, more
than being strictly about computer science research, the
production of labels also had, and has, a wider socio-
economic impact—the often worrying ramifications of
which have been well studied by Gray and Suri (2019)
and Casilli (2019). Here, I shall use “labeling” as an
umbrella term to designate the heterogeneous, but
assignable, practices involved in defining, organizing,
remunerating, and, sometimes, refining the labels that
provide ML algorithms—supervised and unsuper-
vised—with answers to the problems they try to
solve. While this axis of ground-truthing practices
might be, for the time being, the one with the most
obvious ramifications to global socioeconomic issues,
it does not unfold independently from the other two
axes. Indeed, as suggested in Jaton (2021: 31–86), some
algorithmic projects may start to organize the produc-
tion of labels once their problem has been defined and
their data collected and set up, other projects may start
by considering the facilities available for the produc-
tion of labels in order to define the terms of a problem
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in a different way, and other projects may use available

data to define a problem and the labels that can be used

to solve it. Although referring to different practices, the

three axes—problematization, databasing, and label-

ing—echo each other in ways that are specific to each

individual ML endeavour.
If we combine the elements presented in this section,

we find ourselves with, at least, three dimensions—or

axes—on which, schematically, ground-truthing practi-

ces contributing to ML projects can be represented: a

first axis for the problematization practices (e.g., criti-

cizing previous research results, capitalizing on past

achievements), a second axis for the databasing practi-

ces (e.g., web scrapping, distribution analyses), and a

third axis for the labeling practices (e.g., designing a

crowdsourcing task, implementing an available bench-

marked ground truth). And the whole of this space,

now delineated, constitutes the bulk of ground-

truthing practices that are crucial for the shaping and

use of ML algorithms, whether supervised or unsuper-

vised (see Figure 5). If we now include the somewhat

speculative (yet informed) elements of moral philoso-

phy presented in the previous section, each axis of this

3D ground-truthing space becomes staggered by poten-

tial genuine options that, themselves, refer to potential

explorative and collective hesitations between means

and ends (Figure 6).
From there, the theoretical space of ground-truthing

practices becomes a visual and conceptual space on

which specific courses of action can eventually be
reported. This scriptural technology, rudimentary but
refinable, could then support maps differentiating ML
algorithm projects with regard to their ground-truthing
practices (see Figure 7). These techno-moral graphs—
that still need to be put to the test—would be a way to
visualize the moral narratives of the ground-truthing
practices contributing to ML projects—that is,

Figure 5. Schematics of the three dimensions of ground-
truthing practices. On the top, the “problematization” dimension
refers to the practices partaking the definition of the terms of a
solvable problem. On the right, the “databasing” dimension
refers to the practices partaking the aggregation, probing, orga-
nization, and cleaning of the data to be used for the shaping and/
or training of a new algorithm. On the left, the “labeling”
dimension refers to practices partaking the definition, organiza-
tion, collection, and access to the labels that provide the new
supervised or unsupervised ML algorithm with answers to the
problem it should solve.

Figure 6. Schematics of the three dimensions of ground-
truthing practices when staggered by the genuine options that,
potentially, spot their deployment. Each intersection between
lines and axes corresponds to a potential genuine option par-
taking the deployment of problematization, databasing, or label-
ing actions.

Figure 7. Techno-moral graph of three hypothetical ML proj-
ects. If, by convention, each encounter with a genuine option
counts as 1, the addition of these attested meetings/explorations
allows to report a value on one (or more) of the three axes P
(problematization), D (databasing), and L (labeling). The prag-
matist morality of each ML project—as far as its ground-truthing
practices are concerned—could then be summarized by its more
or less extended map on the coordinate system. The more
accounted (and available) explorative hesitations on each of the
axes (small black dots on the axes), the more morality.

10 Big Data & Society



narratives that are all the more voluminous as the
morality maps of their related projects are large.
Similar to the sociotechnical graphs introduced by
Latour et al. (1992), techno-moral graphs would have
no value by themselves: They could only make sense if
they point to already existing documents and reports,
notably, and above all, those accounting for the collec-
tive investigations underlying genuine options. This
scriptural device, for the moment quite speculative,
may operate as a reflexive instrument whose main aim

like that of any other instrument, is to get rid of most

of the initial information, while outlining the features

that are deemed relevant to our inquiry, [and] offer a

quick and easy comparative basis for many narratives

coming from many sources. (Latour et al., 1992: 37)

In short, techno-moral graphs would be a way, among
other possible ones, to visualize, make explicit, and com-
pare some of the constitutive biases of ML algorithms.

Despite the apparent simplicity of these techno-
moral graphs—they are, after all, only a superficial
way of visualizing the quantities of assignable hesita-
tions and scruples that have dotted the ground-truthing
practices underlying specific ML projects—they do
point to deep issues. First, techno-moral graphs suggest
that, for the specific case of ML algorithms—entities
that easily pervade our lives—morality must be sup-
ported by accessible inscriptions and writings:
Without a tangible record of the emergence of a genu-
ine option and its correlated exploration, there is no
way to further attest to its existence. This denotes, in
turn, the power of inscriptions and their centrality in
the composition of the collective world (Jaton, 2021:
12–17). Second, techno-moral graphs suggest that
morality can also be thought of as a quantifiable con-
tinuum: when there are more accounted scruples about
means, there is more morality (i.e., the surface of the
map is larger). While the consultation of the accounts
reporting on the collective explorations would be cru-
cial to assess the seriousness of the enterprise (the only
way to ensure that the graph is the expression of
thoughtful moral concerns), techno-moral graphs
would also give a rough indication about the number
of genuine options explored. If this somewhat personal
operationalization of James’ pragmatist morality may
seem fussy, even bureaucratic, it has the merit of giving
the graphs a potential binding effect: An ML algorithm
could be considered all the more moral as it has gone
through many explored, and accounted, genuine
options. The graphs may then become (costly) moral
backings capable of serving, eventually, as a basis for
subsequent evaluations. In that sense, if, in conjunction
with the development of ML-related projects, techno-
moral graphs were also required (and this would entail

dedicated moral secretaries), the biases that are consti-

tutive of ML algorithms would finally start to be

assessed instead of being repressed.

Discussion and conclusion: ML governance

equipped with assessed biases?

In a recent paper, Jobin et al. (2019) identified

84 public–private initiatives describing sets of princi-

ples to guide the moral/ethical development of ML,

increasingly affiliated with AI. While this principled

approach is certainly important in its ability to,
sometimes, evoke political affects among non-expert

publics, it is not sufficient to make effective differences.

With regard to ML, moralism may establish a horizon

to be reached but fails to enforce clear procedures.

Worse, the active participation of AI companies in

these high-level ethical and moral issues contributes

to the ambient vagueness while also encouraging

“policy-makers with a reason not to pursue new

regulation” (Mittelstadt, 2019: 501). It is, in turn, dif-
ficult to be satisfied with the current situation: If one

adheres to the ideals contained in the principled

approach to ML and AI ethics, one has to admit that

this moralism, on its own, does not have the means to

achieve its ambitions. It still needs to be supported by

new devices, procedures, and habits that have yet to be

invented.
In this theoretical paper, I proposed a moral device

based on the notion of bias and, more broadly, on what

I called ground-truthing practices. I started by showing

that biases should not be seen as a priori negative:

According to Tom Mitchell’s pioneering work on sta-

tistical learning, biases are necessary to define learning

functions. Asking an ML algorithm to be bias-free

would be tantamount to asking a tree to have no

roots: a genuine contradictory injunction that has no
chance of engaging binding mechanisms. I then consid-

ered ground-truth datasets to be repositories of biases

that are central to the development of ML algorithms.

I first proposed that, contrary to what is sometimes

asserted in the specialized literature, these referential

databases—and their underlying design practices that

I call ground-truthing practices—contribute to the

development of supervised and unsupervised ML algo-

rithms. In order to come into existence and be used in

real-world situations, ML algorithms depend indeed on
biases that are the results of assignable practices.

However, these practices can be more or less moral

depending on their ability to make themselves sensitive

to what William James (1912) called genuine options:

moments of doubt about the consequence of an

action that is necessary, irremediable, and imminent.

The morality of ML processes may then be coextensive
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with the exploration of their radical fragility: When

there are more scrupulous doubts about the practices

for defining the problem to be solved, about the data to

be set up, and about the targets to be learned, there is

more morality. I then suggested that these three prac-

tical axes that specify and delimit ground-truthing

practices—problematization, databasing, and label-

ing—could be used as a scriptural space capable of

hosting what I call techno-moral graphs: instruments

for reporting and comparing the quantity of moral

operations that took place during the grounding of

ML-related projects. These graphs, like any other

graph, would not be useful by themselves but by the

many elements they compile and format. The techno-

moral graph of an ML project would permit the visu-

alization of the moral space of its ground-truthing part

and—together with the qualitative consideration of the

documents that each point incrementing the graph refer

to—ensure that alternatives have indeed been the

object of collective investigations. In that sense, it is a

whole ecology of texts and documentation that would

be summarized in techno-moral graphs that could not,

obviously, exist on their own.
To imagine that each ML-related project proposes,

in addition to its inner workings and performances, a

techno-moral graph referring to the accessible accounts

of the doubts and hesitations that occurred in its

ground-truthing practices may seem utopian, at best.

Devoting care and time to exposing the essential fragil-

ities of ML algorithms and systems is not, by far, the

priority of the actors involved in this industry whose

products increasingly, and triumphantly, contribute to

irrigating our daily lives. However, if biases are indeed

constitutive of ML (which remains to be further dem-

onstrated by in situ ethnographic studies), the current

invisibility of biases must also be the result of a work of

purification (Latour, 1987: 45–62) aimed at distinguish-

ing them from the algorithms and systems they under-

lie. From there, integrating more morality into ML-

shaping practices might be a matter of mere substitu-

tion: In place of the many efforts to make the biases

underlying ML algorithms and systems invisible, one

may think about valuing other efforts, such as those

that would make biases visible and consultable.
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Notes

1. STS are a subfield of social sciences that aims to docu-

ment the co-construction of science, technology, and the

collective world. What connects the practitioners of this

heterogeneous research community is the conviction that

science is not only the expression of a logical empiricism,

that knowledge of the world does not preexist, and that

scientific and technological truths are dependent on col-

lective arrangements, instrumentations, and dynamics

(Dear and Jasanoff, 2010). I consider myself fully part

of this research community.
2. More precisely, Mitchell describes bias as “any basis for

choosing one generalization over another, other than

strict consistency with the observed training instances”

(Mitchell, 1980: 1).
3. At the 2019 International Solid-State Circuits Conference

(ISSCC videos, 2019), LeCun refined his “cake analogy.”

The bulk of the cake is now self-supervision, a subcate-

gory of unsupervised learning where the data provides its

own supervision. This method makes convolutional

neural networks independent from labels during their

learning operations.
4. I selected these articles because they were all finalists for

the “best paper award” of the 2019 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR).

CVPR is one of the most prestigious and selective confer-

ences in computer vision and image processing. For the

2019 edition, among the 5160 papers submitted, 1294

were accepted (25%) and 45 (0.87%) ended up being

part of the final best paper award list.
5. More precisely, to test their unsupervised 3D hand pose

estimator, Wan et al. (2019) relied upon the ground truth

NYU Test Set initially proposed by Tompson et al.

(2014). To evaluate their algorithm for part-based disen-

tangling of object shape, Lorenz et al. (2019) used CelebA

by Liu et al. (2015), Cat Head by Zhang et al. (2008),

CUB-200-2011 by Wah et al. (2011), BBC Pose by

Charles et al. (2013), Human3.6M by Ionescu et al.

(2014), Penn Action by Zhang et al. (2013), Dogs Run

(self-made), and Deep Fashion by Liu et al. (2016). To

evaluate their unsupervised domain-mapping algorithm,

Fu et al. (2019) used Cityscape by Cordts et al. (2016),

MNIST initially developed by LeCun, Cortes, and

Burges and further publicized by Deng (2012), and
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SVHN by Netzer et al. (2011). Finally, to evaluate and

compare their self-supervised algorithm for optimal flow,

Liu et al. (2019) used MPI Sintel developed by Butler

et al. (2012), KITTI 2012 by Geiger et al. (2012), and

KITTI 2015 by Menze and Geiger (2015).
6. In a recent paper, Henriksen and Bechmann (2020) pro-

posed to call such grounding practices “truth practices.”

To me, this term is completely equivalent to “ground-

truthing.” However, there are two reasons why I prefer

to use this somewhat complicated (and not very phonic)

terminology: (1) It is a vernacular expression: “ground-

truthing” is sometimes used in the field of applied com-

puting to designate the action of defining external refer-

ents to support an algorithmic process. (2) Its tends to

limit metaphysical speculation: the expression “ground-

truthing” somewhat hides the philosophically very loaded

term “truth.”
7. In a recent TechCrunch article (Constine, 2019), Jordan

Fisher—chief executive officer of Standard Cognition, a

start-up that specializes in image recognition for autono-

mous checkout—talked about the enrolment of ML pub-

lications for industrial purposes: “It’s the wild west—

applying cutting-edge, state-of-the-art machine learning

research that’s hot off the press. We read papers then

implement it weeks after it’s published, putting the

ideas out into the wild and making them production-

worthy.”
8. Moral experiences, according to Kant, only make sense

in so far as they fall under the jurisdiction of a universal

and necessary law. And the categorical imperative—for-

mulated in Kant (1998 [1785])—is the finite version of the

universal law that is applicable by us, finite humans, to

our ordinary actions.
9. On the possibility to build habits around the exploration

of genuine options, see the ethnographic work of

Haeringer and Pecqueux (2020) on the space for dialogue

“Parlons-en” in Grenoble, France.
10. With its millions of annotated images, the ground-truth

dataset ImageNet is certainly the most illustrative exam-

ple of the correlation between advances in computer sci-

ence research and the construction and dissemination of

ground-truth datasets. For a (quick) history of the for-

mation of ImageNet, see Gray and Suri (2019: 6–8) as

well as Gershgorn (2017) and Markoff (2012).
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